A Comparative Study between FSMC and FSOSMC Strategy for a DFIG-based Wind Turbine System

  • Habib BENBOUHENNI Ecole Nationale Polytechnique d'Oran Maurice Audin, Oran, Algeria
Keywords: WTS; DFIG; SMC; FSMC; FSOSMC.

Abstract

This paper presents a modelling and sliding mode control (SMC) of a doubly fed induction generator (DFIG) integrated into wind turbine system (WTS) for independent control of reactive and active stator power. For a comparative study, the independent control of reactive and active stator power is ensured in the first step by fuzzy sliding mode controller (FSMC) and the second step by fuzzy second order sliding mode controller (FSOSMC). Finally, the performance of the system is tested and compared by simulation in terms of robustness and reference tracking based on Matlab / Simulink software.

References

[1] Y. Wu, W. Yang, « Different control strategies on the rotor side converter in DFIG-based wind turbines, » Energy Procedia, Elsevier, Vol. 100, pp. 551-555, 2016.
[2] Z. Boudjema, R. Taleb, Y. Djerriri, A. Yahdou, « A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system, » Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, pp. 965-975, 2017.
[3] E. G. Shehata, « Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines, » Alexandria Engineering Journal, Vol. 54, pp. 1067-1075, 2015.
[4] F. Amrane, A. Chaiba, B. Babas, S. Mekhilef, « Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller, » Rev. Roum. Sci. Techn.-Electrotechn. Et Energ, Vol. 61, No. 4, pp. 319-324, 2016.
[5] Z. Boudjema, A. Meroufel, A. Amari, « Robust control of a Doubly fed induction generator (DFIG) fed by a direct AC-AC converter, » Przegląd Elektrotechniczny, Vol. 11, pp. 213-221, 2012.
[6] Z. Boudjema, A. Meroufel, Y. Djerriri, « Nonlinear control of a doubly fed induction generator for wind energy conversion, » Carpathian Journal of Electronic and Computer Engineering, Vol. 6, No. 1, pp. 28-35, 2013.
[7] Y. Bekakra, D. Ben Attous, « DFIG sliding mode control driven by wind turbine with using a SVM inverter for improve the quality of energy injected into the electrical grid, » ECTI Transactions on Electrical Eng, Electronics, and Communications, Vol. 11, No. 1, pp. 63-75, 2013.
[8] Y. Bekakra, D. Ben Attous, « Comparison study between SVM and PWM inverter in sliding mode control of active and reactive power control of a DFIG for variable speed wind energy, » International Journal of Renewable Energy Research, Vol. 2, No. 3, pp. 471-776, 2012.
[9] Z. Boudjema, A. Meroufel, Y. Djerriri, E. Bounadja, « Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion, » Carpathian Journal of Electronic and Computer Engineering, Vol. 6, No. 2, pp. 7-14, 2013.
[10] A. Kerboua, M. Abid, «Hybrid fuzzy sliding mode control of a doubly-fed induction generator speed in wind turbines, » Journal of Power Technologies, Vol. 95, No. 2, pp. 126–133, 2015.
[11] A. Yahdou, B. Hemici, Z. Boudjema, « Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter, » Journal of Electrical Engineering, Vol. 16, No. 4, pp.1-11, 2016.
[12] H. Benbouhenni, Z. Boudjema, A. Belaidi, «Neuro-second order sliding mode control of a DFIG supplied by a two-level NSVM inverter for wind turbine system, » Iranian Journal of Electrical & Electronic Engineering, Vol. 14, No. 4, pp. 362-373, 2018.
[13] H. Benbouhenni, « Fuzzy second order sliding mode controller based on three-level fuzzy space vector modulation of a DFIG for wind energy conversion systems, » Majlesi Journal of Mechatronic Systems, Vol. 7, No. 3, 2018.
[14] H. Benbouhenni, A. Moussaoui, Z. Boudjema, « Wind energy conversion systems based on a DFIG controlled by neuro-sliding mode control using NSVM and PWM, » International Conference on Electrical Engineering, December 17-18, 2018, El-oued, Algeria.
[15] M. M. Rezaei, M. Mirsalim, « Improved direct torque control for induction machine drives based on fuzzy sector theory,» Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 2, pp. 110-118, 2010.
[16] H. Obdan, M. C. Ozkilic, « Performance comparison of 2-level and 3-level converters in a wind energy conversion system, » Rev. Roum. Sci. Techn.-Electrotechn. et Energ, Vol. 61, No. 4, pp. 388-393, 2016.
[17] E. E. M. Mohamed, M. A. Sayed, « Matrix converters and three-phase inverters fed linear induction motor drives-performance compare, » Ain Shams Engineering Journal, Vol. 2, 2016, pp. 1-12.
[18] N. Mekkaoui, M. Naït-Saïd, « Direct s-power control for a doubly fed induction generator, » Rev. Roum. Sci. Techn.-Electrotechn. Et Energ, Vol. 62, No. 4, pp. 365-370, 2017.
[19] A. Boumediène, L. Abdellah, «A novel sliding mode fuzzy control based on SVM for electric vehicles propulsion system, » ECTI Transactions on Electrical Eng., Electronics and Communications, Vol. 10, No. 2, pp. 153-163, 2012.
[20] S. Allirani, V. B. T. Raaj, « Development of space vector pulse width modulation algorithm for voltage source inverter using dsPIC controller 30F4011, » International Journal of Pure and Applied Mathematics, Vol. 114, No. 9, 2017, pp. 257-269.
[21] H. Benbouhenni, « Comparative study between NSVM and FSVM strategy for a DFIG-based wind turbine system controlled by neuro-second order sliding mode, » Majlesi Journal of Mechatronic Systems, Vol. 7, No. 1, pp.33-43, 2018.
[22] H. Benbouhenni, Z. Boudjema, A. Belaidi, « DFIG-based wind turbine system using three-level neural space vector modulation technique, » Majlesi Journal of Mechatronic Systems, Vol. 7, No. 2, pp. 35-45, 2018.
[23] H. Benbouhenni, Z. Boudjema, A. Belaidi, « Direct vector command based on three-level NSVM of a doubly fed induction generator for wind energy conversion, » International Conference on Applied Smart Systems, November 24-25, 2018, Medea, Algeria.
[24] S. E. Ardjoun, M. Abid, « Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines, » Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 23, Vol. 6, pp. 1673-1686, 2015.
[25] Y. Guo, H. Long, « Self organizing fuzzy sliding mode controller for the position control of a permanent magnet synchronous motor drive, » Ain Shams Engineering Journal, Vol. 2, pp. 109-118, 2011.
[26] Z. Boudjema, R. Taleb, A. Yahdou, A. Bouyekni, « Fuzzy second order sliding mode control of a doubly-fed induction machine supplied by to matrix converters, » Journal of Electrical Engineering, Vol. 15, No. 3, pp. 1-10, 2015.
[27] H. Benbouhenni, Z. Boudjema, A. Belaidi, « Indirect vector control of a DFIG supplied by a two-level FSVM inverter for wind turbine system, » Majlesi Journal of Electrical Engineering, Vol. 13, No. 1, 2019.
[28] H. Benbouhenni, Z. Boudjema, A. Belaidi, « Direct vector control of a DFIG supplied by an intelligent SVM inverter for wind turbine system, » Iranian Journal of Electrical and Electronic Engineering, Vol.15, No. 1, pp. 45-55, 2019.
[29] H. Benbouhenni, Z. Boudjema, A. Belaidi, « DFIG-based wind turbine system using four-level FSVM strategy, » Majlesi Journal of Energy Management, Vol. 6, No. 3, 2017.
[30] H. Benbouhenni, « Comparative study between different vector control methods applied to DFIG wind turbines, » Majlesi Journal of Mechatronic Systems, Vol. 7, No. 4, pp. 15-23, 2018.
Published
2019-06-01
How to Cite
BENBOUHENNI, H. (2019). A Comparative Study between FSMC and FSOSMC Strategy for a DFIG-based Wind Turbine System. Majlesi Journal of Mechatronic Systems, 8(2), 7-14. Retrieved from https://ms.majlesi.info/index.php/ms/article/view/397
Section
Articles

Most read articles by the same author(s)