
Performance Comparison of LOLIMOT Algorithm and MLP Neural Network in Identification of a Heat Exchanger

Maryam Mohseni1, Mahdi Aliyari Shoorehdeli2
[bookmark: _Ref233440976]1- Department of Control Engineering, South Tehran Branch, Islamic Azad University (IAU), Tehran, Iran.
Email: mohseni.maryam6@gmail.com (Corresponding author)
2- Faculty of Electrical Engineering, Department of Mechatronics Engineering, K. N Toosi University of Technology, Tehran, Iran.
Email: aliyari@eetd.kntu.ac.ir

Received: October 2015		Revised: November 2015		Accepted: January 2016

ABSTRACT:
In this paper, designing a predictive model of a heat exchanger by using a multilayer perceptron (MLP) neural network and a local linear neuro-fuzzy network (LLNF) is presented. Local linear model tree algorithm (LOLIMOT) is used for training LLNF network, and gradient descent (GD) and Levenberg–Marquardt (LM) methods are used for training MLP network. There are two methods to apply data to MLP network. Both methods have been used in training MLP network and finally results of all methods have been compared together. The obtained results show that even though various training methods are applied to MLP network, this network is not able to give better results compared to the LOLIMOT algorithm. However, results of all models are acceptable and have minor differences with each other.

KEYWORDS: Multilayer Perceptron network, Local Linear Model Tree algorithm, Heat Exchanger, Levenberg–Marquardt algorithm.

Majlesi Journal of Electrical Engineering Vol. 4, No. 3, December 2010

Majlesi Journal of Mechatronic Systems Vol. 5, No. 2, June 2016

Majlesi Journal of Mechatronic Systems Vol. 5, No. 2, June 2016

20

19

Introduction
In general, system identification is widely used in model based applications such as prediction, simulation, control and fault detection. For instance, instead of a real system a simulator model of a heat exchanger can be used in simulation environment. In addition, identification of model of a system is needed in predicting system behavior, and in order to use predictive method it is necessary to predict the future behavior of output by considering the system model, and then optimum control signal will be obtained by minimizing the objective function. Neural and fuzzy networks are two important tools in identification of nonlinear systems. In these networks, application of appropriate methods for training nonlinear parameters plays a decisive role and that is why many researchers have tried to find the most appropriate method for training these networks. One of the best training methods in local linear neuro-fuzzy (LLNF) networks is local linear model tree (LOLIMOT) algorithm, which has been regarded as a popular method in the recent years and various methods have been created based on this algorithm [1-2]. On the other hand, many different methods have been introduced for training multilayer perceptron (MLP) neural networks. So far, various articles have addressed to system identification with LOLIMOT algorithm or neural networks [3]-[12], but, in this paper it has been tried to make a more complete comparison among various models and training methods, and by applying a same input to MLP and LLNF networks, success levels of each training method at these networks has been assessed.
Heat exchanger system is introduced in section 2 of this paper. In section 3, first, MLP neural network is presented in summary and then different training methods in MLP networks are described. Simulation results of each method are given in section 4. section 5 is dedicated to discussion and conclusion.

Introducing heat exchanger system
The considered nonlinear system is a heat exchanger. If the temperature of output liquid is considered as the output of the system, the system has three input variables. Sampling the output of system has been done only by applying changes in one of the input variables, and other input variables has been kept constant in nominal values; therefore, the system is considered as a single-input single-output (SISO) system. After system dynamics analysis using genetic algorithm, six dynamics are selected as effective dynamics and are used as inputs in the study networks.

System identification with MLP neural network

A brief introduction of MLP neural networks
A multilayer perceptron (MLP) neural network has an input layer, hidden layers and an output layer where each of these layers are comprised of a number of neurons. In this network, input of each neuron is obtained from outputs of the previous neurons, in such a way that outputs of the previous neurons are multiplied in weighting coefficients and then their summation as an input is applied to the nonlinear activation function. Selecting the appropriate activation function depends on objective of MLP network. In system identification applications, tansig and logsig functions are usually used in hidden layers and purelin function is used in output layer. Fig. 1 shows an MLP neural network with hidden layers.
[image: neural-net1]
Fig. 1. General structure of an MLP network

Training MLP neural network

One of the traditional training algorithms among these networks is gradient descent (GD). In each iteration of this algorithm, the desired output value is compared with output of the model and weights of network are corrected according to the obtained error so as to reach an error with its minimum value. In the simplest form, the network parameters (weights and biases) are updated in a direction where slope of the objective function is decreasing. Equation (1) gives one iteration of this algorithm where is the current network parameters (weights and biases). andare current slope and training rate, respectively.
	

	(1)

There are two methods for presenting input samples to the network:
1- First method: in each iteration of this method, all training samples are used in MLP network in a batch mode where network error is calculated with respect to all the data and at last, network weights are updated. This method is named Full-Propagation (FP).
2- Second method: in each iteration of this method, samples are given in an one by one(incremental) mode and its corresponding error is calculated immediately, and network weights are varied based on the obtained error. Then, the next sample is given to the network and the above procedure is repeated until all samples are applied to the network. In the next iteration of the algorithm, the same operations are carried out until the error is decreased to the desired value. This method is called Back-Propagation (BP).
After training procedure, a number of input data that have not contributed in training procedure, as test inputs are given to the network to evaluate the training procedure. This procedure should continue to an extent that general feature of the network is not lost. Choosing the number of neuron in each hidden layer and also the number of hidden layers are important, because if the number of hidden layers is low, then it is possible that the network will not be able to learn complex structures. On the other hand, if the number of neurons and hidden layers is high, then the obtained model unnecessarily will be complex and therefore the principle of parsimony will be contradicted. According to the mentioned reasons, the optimum number of neurons must be chosen for simulation aims. For this system, 12 neurons in the first hidden layer and 7 neurons in the second hidden layer have been chosen. After training the network with GD method, Levenberg-Marquardt (LM) method is used for training MLP network to improve the results.

LM algorithm
Gradient descent algorithm can be used in every problem with smooth nonlinear cost function, and this algorithm does not consider any other assumption for the cost function; therefore, it can be used in a great number of nonlinear problems. On the other hand, in Feed-Forward networks, cost function is considered as sum of equared errors that in this case Hessian matrix and slope are calculated as in (2) and (3):
	

	(2)

	

	(3)

In the above equations, J and E are Jacobian matrix and error vector of the network, respectively. Jacobian matrix includes first derivations of network errors with respect to biases and weights of the network, and calculation of this matrix is very simpler than hessian matrix. Equation (4) is obtained by instituting (2) and (3) at (1):
	

	(4)

In (4), µ is added to eigenvalues of to solve invertibility problem. If eigenvalues of is named and µ is very small compared to , then µ is negligible and therefore the above relationship becomes a Gauss-Newton relationship. Also, if µ is very large against , then the relationship becomes a gradient descent one. Thus, it is obvious that with varying µ LM algorithm can move between two Gauss-Newton and gradient descent algorithms and this a privilege for LM method. In LM method, at first , µ is considered a large value and it gradually decreases, because around the optimum points Gauss-Newton algorithm has a better performance in comparison to gradient descent.

System identification with neuro-fuzzy model
LOLIMOT is a solution based on division and solving of problem, where a complex problem is divided into number of smaller and simpler sub-problems. Then, these sub-problems are identified with linear models in a relatively independent way. Structure of LLNF network with M neurons and P inputs is shown in Fig. 2 [13].

[bookmark: _MON_1040652312][image:]
[bookmark: _Ref92866020]Fig. 2. Structure of LLNF network.

LOLIMOT algorithm divides the input space with vertical axes. In this algorithm, each neuron includes a local linear model (LLM) and a validation function that its validation domain determines the LLM. For a model with P inputs, output of each LLM is as (5). In (5) is parameters of LLM for i-th neuron and is network inputs.
	

	(5)

Parameters of LLM are independently estimated with the use of mean square error (MSE) method that makes the network to have less sensitivity to the noise, because noise affects locally. Validation functions are usually chosen as normalized Gaussian functions which is shown in (6) with :
	

	(6)

 in (7) and (8) is Gaussian functions that their centers and standard deviations are shown with ‌and , respectively. Equation (8) shows the network output. As it is obvious from (8), network output is in fact weighted sum of LLMs and therefore, with the validation functions among various LLMs, network carries out an interpolation.
	

	(7)

	

	(8)

In the first iteration of LOLIMOT method, the whole input space has only one neuron, but in each iteration input space is divided again and another neuron is added. Division of input space is carried out in a way that in each iteration the worst LLM which has more local error is chosen and then it is divided in half in the direction of each of the inputs. A neuron is put in every section of it, and a direction that putting the neuron in each sections of it makes the least error, is selected. In the next iteration, again the worst LLM which has the greatest local error is selected and the above operations is continued to reach the desired solution.

Simulation results
Results of all nonlinear models for the test data are given in Figs. 3-6 and Table 1. As it is seen from the results, LOLIMOT algorithm has performed better in comparison to the other methods. In general, LOLIMOT algorithm is one the superior methods in identification of nonlinear systems, because it has a favorable convergence speed and is able to oppose the noise and results of this study also verifies this issue.
Table 1 shows that MLP will present better results in case it uses LM training method. GD algorithm in both cases that it uses BP and FP methods gives weaker results in comparison to LM algorithm. Also, one weakness of GD algorithm is that it needs small training rate for appropriate and stable training and this has led GD algorithm to have a much more convergence time compared to LM algorithm and it reaches the solution in a more number of iterations. In LOLIMOT algorithm autocorrelation of test error is completely similar to that of white noise and this shows that LOLIMOT algorithm has been successful in identification of heat exchanger. However, considering that test errors has a negligible difference in all methods, it can be concluded that the results of MLP model is valid.

Table 1. Results of MLP and LLNF models
	Model
	Training method
	Training MSE
	MSE Test

	MLP
	GD(FP)
	0.15342
	0.23639

	MLP
	GD(BP)
	0.16203
	0.22087

	MLP
	LM
	0.12628
	0.21496

	MLP
	GD(FP)
	0.15342
	0.23639

	LLNF
	LOLIMOT
	0.10536
	0.16134

Fig. 3. Real output and output of LOLIMOT model

Fig. 4. Real output and output of MLP (BP) model

Fig. 5. Real output and output of MLP (FP) model

Fig. 6. Real output and output of MLP (LM) model

REFERENCES
T. Fischer, O. Nelles, “Merging strategy for local model networks based on the lolimot algorithm, ” in 24th International Conference on Artificial Neural Networks, Vol. 8681 LNCS, ed. Hamburg: Springer Verlag, pp. 153-160, 2014.
B. Hartmann, O. Nelles, “Identification with axes-oblique, local polynomial model networks, ” in Automatisierungstechnik, Vol. 62, pp. 394-407, 2014.
M. Maboodi, M. H. Ashtari Larki, and M. Aliyari Shoorehdeli, “An under load servo actuator identification and comparison between the results of different methods, ” Iranian Journal of Electrical and Electronic Engineering, Vol. 8, pp. 227-233, 2012.
A. Hajian, H. Zomorrodian, P. Styles, F. Greco, and C. Lucas, “Depth estimation of cavities from microgravity data using a new approach: The local linear model tree (LOLIMOT), ” Near Surface Geophysics, Vol. 10, pp. 221-234, 2012.
N. Ghaffarian, R. Eslamloueyan, and B. Vaferi, “Model identification for gas condensate reservoirs by using ANN method based on well test data, ” Journal of Petroleum Science and Engineering, Vol. 123, pp. 20-29, 2014.
M. I. P. Hidayat, “System Identification Technique and Neural Networks for Material Lifetime Assessment Application, ” in Studies in Fuzziness and Soft Computing, Vol. 319, pp. 773-806, 2015.
E. Amini, M. Aliyari Sh, H. Tolouei, and M. Mansouri, “Model-based fault detection using RBF networks and extended Kalman filter, ” in 1st RSI/ISM International Conference on Robotics and Mechatronics, Tehran, pp. 242-247, 2013.
H. Habbi, M. Kidouche, and M. Zelmat, “Data-driven fuzzy models for nonlinear identification of a complex heat exchanger, ” Applied Mathematical Modelling, Vol. 35, pp. 1470-1482, 2011.
S. M. Hosseini-Golgoo, H. Bozorgi, A. Saberkari, and S. Rahbarpour, “Analyzing the response of a temperature modulated tin-oxide gas sensor using local linear neuro-fuzzy model for gas detection, ” in 2nd International Conference on Materials and Applications for Sensors and Transducers, Vol. 543, pp. 129-132, 2012.
J. D. Martínez-Morales, E. R. Palacios-Hernández, and G. A. Velázquez-Carrillo, “Artificial neural network based on genetic algorithm for emissions prediction of a SI gasoline engine, ” Journal of Mechanical Science and Technology, Vol. 28, pp. 2417-2427, 2014.
[bookmark: _GoBack]B. C. Ng, I. Z. M. Darus, H. Jamaluddin, and H. M. Kamar, “Dynamic modelling of an automotive variable speed air conditioning system using nonlinear autoregressive exogenous neural networks, ” Applied Thermal Engineering, Vol. 73, pp. 1253-1267, 2014.
D. Schwingshackl, J. Rehrl, and M. Horn, “Model predictive control of a HVAC system based on the LoLiMoT algorithm, ” in 12th European Control Conference, pp. 4328-4333, 2013.
O. Nelles, “Nonlinear system identification: from classical approaches to neural networks and fuzzy models, ” Springer Science & Business Media, 2001.
image1.png

image2.wmf
k

X

oleObject1.bin

image3.wmf
k

g

oleObject2.bin

image4.wmf
k

a

oleObject3.bin

image5.wmf
1

KKKk

XXg

a

+

=-

oleObject4.bin

image6.wmf
2

T

HJJ

=

oleObject5.bin

image7.wmf
2

T

gJE

=

oleObject6.bin

image8.wmf
1

1

TT

KK

XXJJIJE

m

-

+

éù

=-+

ëû

oleObject7.bin

image9.wmf
T

JJ

oleObject8.bin

oleObject9.bin

image10.wmf
a

oleObject10.bin

oleObject11.bin

oleObject12.bin

image11.png

image12.wmf
ij

w

oleObject13.bin

image13.wmf
i

u

oleObject14.bin

image14.wmf
01122

ˆ

...

iiiipp

ywwuwuwu

=++++

oleObject15.bin

image15.wmf
i

f

oleObject16.bin

image16.wmf
1

()

()

()

i

i

M

j

j

u

u

u

m

f

m

=

=

å

oleObject17.bin

image17.wmf
()

i

u

m

oleObject18.bin

image18.wmf
ij

c

oleObject19.bin

image19.wmf
ij

s

oleObject20.bin

image20.wmf
2

2

11

22

1

()

()

1

()exp...

2

pip

i

i

iip

uc

uc

u

m

ss

æö

æö

-

æö

-

ç÷

=-++

ç÷

ç÷

ç÷

ç÷

èø

èø

èø

oleObject21.bin

image21.wmf
01122

1

ˆ

(...)()

M

iiiippi

i

ywwuwuwuu

f

=

=++++

å

oleObject22.bin

image22.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature[°c]

model output

real output

image23.emf
210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature[°c]

model output

real output

image24.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature[°c]

model output

real output

image25.emf
210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature[°c]

model output

real output

image26.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature [°c]

Model Output & Real Output of Testing Data

model output

real output

image27.emf
210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature [°c]

Model Output & Real Output of Testing Data

model output

real output

image28.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature [°c]

Model Output & Real Output of Testing Data

model output

real output

image29.emf
210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature [°c]

Model Output & Real Output of Testing Data

model output

real output

image30.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature [°c]

model output

real output

image31.emf
200 210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature [°c]

model output

real output

image32.emf
0 200 400 600 800 1000 1200

93

94

95

96

97

98

99

100

101

102

Samples

Outlet Liquid Temprature [°c]

model output

real output

image33.emf
200 210 220 230 240 250 260 270

95

96

97

98

99

100

101

102

103

Samples

Outlet Liquid Temprature [°c]

model output

real output

